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Impact of mid Eocene greenhouse warming on
America’s southernmost floras
Damián A. Fernández1,2,3, Luis Palazzesi 3,4✉, M. Sol González Estebenet3,5, M. Cristina Tellería3,6 &

Viviana D. Barreda3,4

A major climate shift took place about 40Myr ago—the Middle Eocene Climatic Optimum or

MECO—triggered by a significant rise of atmospheric CO2 concentrations. The biotic

response to this MECO is well documented in the marine realm, but poorly explored in

adjacent landmasses. Here, we quantify the response of the floras from America’s south-

ernmost latitudes based on the analysis of terrestrially derived spores and pollen grains from

the mid-late Eocene (~46–34Myr) of southern Patagonia. Robust nonparametric estimators

indicate that floras in southern Patagonia were in average ~40% more diverse during the

MECO than pre-MECO and post-MECO intervals. The high atmospheric CO2 and increasing

temperatures may have favored the combination of neotropical migrants with Gondwanan

species, explaining in part the high diversity that we observed during the MECO. Our

reconstructed biota reflects a greenhouse world and offers a climatic and ecological deep

time scenario of an ice-free sub-Antarctic realm.
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The Earth has undergone a general cooling trend for the past
~50Myr, culminating in a continental-scale glaciation of
Antarctica at the Eocene–Oligocene boundary. The Middle

Eocene Climatic Optimum (or MECO) occurred about 40 million
years ago, interrupting that cooling trend when vast amounts of
CO2 were injected into the atmosphere, and sea surface tem-
perature increased as much as 6 °C1. This warming event—widely
recognized by a prominent perturbation in both oxygen and
carbon stable isotopes—lasted about 500–600 Kyr2,3.

Ecological models can potentially predict the impact of species
diversity to rising temperatures and atmospheric CO2. However,
only the fossil record provides empirical evidence on how bio-
diversity is affected by long-term climatic transitions, even during
global warming events. For example, fossil floras are known to
have peaked in diversity during earlier hyperthermal episodes
either at low4 or high5 paleo-latitudes of the American continent.
The MECO may have also influenced terrestrial biotas, yet the
magnitude of this response remains largely unknown as most
published data have traditionally focused on the marine realm; it
is still unclear whether biotic diversity increased, whether turn-
overs were gradual or step-like or whether tropical immigrants
were frequent at the highest latitudes during the MECO.

Here, we quantitatively estimate shifts in floristic diversity on
the basis of the analysis of terrestrially derived spore-pollen
assemblages preserved in well-constrained marine Patagonian

deposits (Río Turbio Formation) encompassing the MECO as
well as the pre- and post-MECO. We used the dinocyst (i.e.
dinoflagellate cyst) record to constrain the age of the spore and
pollen bearing sediments. Our study reinforces the importance of
the fossil spore-pollen record to explore past diversity trends and
represents a new explicit picture of how floras responded to a
greenhouse event in America’s highest austral latitudes.

Results
We recovered well preserved palynomorphs (i.e. dinocysts,
spores, and pollen grains) in 53 samples of the Río Turbio For-
mation, southern South America (Fig. 1; Supplementary Fig. 1).
From those, we selected 32 samples based on lithology (e.g. coal
seams were removed from the analysis) and paleoenvironmental
settings (see Methods; Supplementary Note 1). The dinocyst
species are given in Supplementary Data 1 and Supplementary
Fig. 2. We detected three major groups of samples based on our
cluster analysis using dinocyst frequency (Supplementary Data 1;
Supplementary Fig. 3), probably driven by shifts in the most
frequent species through the composite section: Enneadocysta
dictyostila. This is a key species of the Middle Eocene Climatic
Optimum (MECO) in the southernmost latitudes (see Supple-
mentary Note 2). The three groups of samples detected by our
cluster analysis represent distinct time intervals: Interval (A)

Fig. 1 Study area. Location map showing distribution of Eocene sedimentary rocks of the Río Turbio Formation, Santa Cruz Province, Patagonia, southern
South America.

Table 1 Diversity estimators derived from spore-pollen records from southern Patagonia.

Samples Age (Mya) Interval Evenness EWSD (size= 250) EWSD (cov= 0.8) EWSD (Chao1)

26–32 <36 Post-MECO 0.347 0.347 26.661 26.661 13.184 13.184 35.184 35.184
22–25 41–39 MECO 0.382 0.364 35.904 35.855 18.419 17.263 54.874 57.714
13–21 0.364 0.364 36.305 35.855 16.967 17.263 57.845 57.714
8–12 0.346 0.364 35.357 35.855 16.403 17.263 60.425 57.714
1–7 47-46 Pre-MECO 0.359 0.359 30.421 30.421 13.753 13.753 41.726 41.726

Estimates from pre-MECO, MECO (subgroups 1–3), and post-MECO.
EWSD Estimated Within-Sample Diversity.
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ranging from samples 1–7 (ca. 47–46Myr, pre-MECO); Interval
(B) ranging from samples 8–25 (ca. 41–39Myr, MECO), typically
characterized by the dominance of the species E. dictyostila, that
increases as much as 95% at some of these samples (Supple-
mentary Figs. 3, 4); and Interval (C) ranging from samples 26–32
(ca. 36–26Myr, post-MECO). The frequency of distinct dinocyst
biogeographic groups (i.e. endemics, cosmopolitans) preserved
across the MECO shows a very close similarity with that reported
from the South Tasman Rise6,7, in Australia (see Supplementary
Fig. 3 and Supplementary Note 2 for further details).

Among continental palynomorphs, we identified 117 spore and
pollen species (Supplementary Data 2, Supplementary Note 3)
represented by 2 bryophytes, 3 lycophytes, 25 ferns, 11 gym-
nosperms, and 76 angiosperms. We used these continental
palynomorphs to empirically estimate biodiversity and explore
major trends in vegetation across the three intervals detected
based on the frequency of dinocyst species.

Our analyses on fossil spores and pollen grains indicate
that our three intervals preserve relatively rich floras (Table 1;
Figs. 2–3); adjusted for coverage (=0.8) we detect a ~25% increase
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Fig. 2 Floristic diversity across time in southern Patagonia. a Within-sample richness (coverage level= 0.8) with bootstrapped 95% confidence intervals
and b evenness for pre-MECO (green), MECO (dark-orange) with three subgroups and post-MECO (yellow) samples against the composite section of the Río
Turbio Formation (see references in Supplementary Fig. 1). Vertical bars in a denote mean diversity within each major group of samples (or intervals) detected
from the constrained cluster analysis (c). See Table 1 for further details. Arrows at the Stage column indicate major dinocyst events from the sampled
composite section of the Río Turbio Formation; (1) Lowest Occurrence of E. dictyostila; (2) Lowest Common Occurrence of E. dictyostila; (3) Lowest Common
Occurrence of T. filosa; (4) Highest Occurrence of T. filosa; (5) Highest Common Occurrence of E. dictyostila . See Supplementary Fig. 5 for further details.
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in within-sample richness from pre-MECO (interval A) to MECO
(interval B) and a ~25% decrease from MECO to post-MECO
(interval C). This perceived increase in richness can be, in part,
due to an increase in evenness (Fig. 2); even samples tend to have
a higher richness8,9. However, the richness estimator Chao1,
which requires no assumptions about an underlying species
abundance distribution10, confirms both the increasing richness
trend from pre-MECO to MECO (39%) and the decreasing trend
from MECO to post-MECO (~38%) (Table 1, Fig. 3). Consistent
with this, rarefaction curves for each interval indicates that
MECO samples are relatively more diverse than pre-MECO and
post-MECO samples (Fig. 4).

Furthermore, within the MECO (or interval B), we recognize
three minor subgroups of samples (subgroup 1–3) with similar
pollen and spore species according to our continental cluster
analysis (Fig. 2c). Across these three subgroups of the MECO, we
detect a clear inverse relationship between the abundance of ferns
and angiosperms (Figs. 5, 6). At the beginning of the MECO
(subgroup 1, samples 8–12), ferns highly increase in abundance
(ca. 60%) with Cyatheaceae, Dicksoniaceae, and Osmundaceae as
the most frequent families. At this peak of ferns, the abundance of
angiosperms decreases dramatically (from 70 to 30%). At the core
of the MECO (subgroup 2, samples 13–21), ferns drop to a
minimum, while angiosperms become dominant (80%). Apart
from the dominant lineages (i.e. southern beeches and
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Fig. 3 Floristic diversity across time in southern Patagonia.Within-sample Chao1 estimated richness with bootstrapped 95% confidence intervals for pre-
MECO (green), MECO (dark-orange) and post-MECO (yellow) samples from southern Patagonia the composite section of the Río Turbio Formation (see
references in Supplementary Fig. 1). Vertical bars denote mean Chao1 diversity within each major group of samples (or intervals) detected from the
continental constrained cluster analysis. Note that, in average, the within-sample Chao1 estimator is ~40% higher during the MECO than pre-MECO and
post-MECO intervals. See Table 1 for further details. Arrows at the Stage column indicate major dinocyst events from the sampled composite section of the
Río Turbio Formation; (1) Lowest Common Occurrence of E. dictyostila; (2) Highest Common Occurrence of E. dictyostila; (3) Lowest Common Occurrence
of T. filosa; (4) Highest Occurrence of T. filosa; (5) Highest Common Occurrence of E. dictyostila. See Supplementary Fig. 5 for further details.
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podocarps), other gondwanan families (e.g. Myrtaceae and Pro-
teaceae) became important elements (Fig. 6). At the end of the
MECO (subgroup 3, samples 22–25) ferns rise again to maximum
values (ca. 60%) while angiosperms decrease at the same time.
Tropical taxa occur commonly across the entire sampled section,
in particular palms, Cupania, Ilex, Malpighiaceae, Olacaceae,
among others (Fig. 7; Supplementary Fig. 6; Supplementary
Note 4). Some of them, however, are widely distributed
throughout the MECO such as some angiosperms (e.g. Ceiba,
Cardiospermum, Trimenia) and ferns (e.g. Anemiaceae, Cnemi-
daria, Schizaceae) (Supplementary Note 4).

Overall, pre-MECO and post-MECO samples not only show
similar richness estimates (Table 1), but also contain comparable
abundances of the major plant groups (Figs. 5, 6). Despite these
similarities in diversity and abundance, the composition of
the spore-pollen assemblages indicates a different scenario; dis-
tances among samples in ordination space (Fig. 8) support

dissimilarities, especially between pre-MECO versus MECO and
post-MECO spore-pollen samples. Samples representing the pre-
MECO plot to the right on the NMDS axis 1, and occupy a
distinct region of the plot, showing they are compositionally
distinct from post-MECO and MECO samples. These last two
groups of samples, in contrast, slightly overlap, probably due to a
gradual—rather than a sharp—compositional transition between
them. Our constrained cluster analysis based on spore-pollen
abundance also shows a comparable assembly, with pre-MECO
samples sister to the MECO and post-MECO samples (Fig. 2c).

Discussion
America’s southernmost floras were impacted by the mid-Eocene
greenhouse warming event. We found evidence to support that
plant richness increased jointly with increasing world tempera-
tures and atmospheric CO2. Although richness estimates at the
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Fig. 5 Relative frequency of the major plant groups through time. Note the peak in abundance of ferns at the onset and end of the MECO.
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MECO from lower latitudes (Colombia) are considerably higher
than those reported from Patagonia11; Tables 1, 2), the magnitude
of this increase—from pre-MECO to MECO—is fairly similar
(>35%) based on our non-parametric estimator. The enormous
difference in plant richness between South American lowest

(~6°N) and highest (~51°S) latitudes (more than twofold) lead us
to assume that the latitudinal diversity gradient (LDG) was
already well established in South America by mid-Eocene times.
This is before the onset of the oldest major glaciation in Ant-
arctica close to the Eocene/Oligocene boundary (~34Myr ago), a
time of rapid global cooling and pronounced shift in the Earth’s
climate from greenhouse to icehouse12. The existence of this LDG
during greenhouse conditions was also supported by other
Eocene paleofloras9 and marine invertebrates13, suggesting that
temperature may have not been the primary driver of the LDG
through deep time14. Our high southern latitude paleofloras, even
during the MECO, show patterns of relatively high dominance
and low evenness; particularly Nothofagaceae, Podocarpaceae,
Proteaceae and Myrtaceae tend to dominate the assemblages.
Together, these Gondwanan lineages comprise ~30% of the total
mid-Eocene diversity in southern Patagonia, and this figure rose
during global cooling events up to 50%15.

The equable climatic context of the mid-Eocene promoted the
dispersal of tropical or subtropical taxa to the highest southern
latitudes (Supplementary Fig. 6). For example, we documented
four morphotypes assigned to palms (Arecaceae), and several
other eudicot angiosperms (e.g. Anacolosa, Bombacoideae,
Cupania, Malpighiaceae, Olacaceae, Sapindaceae) and ferns (e.g.
Cnemidaria, Anemiaceae) that no longer occur in Patagonia; see
Supplementary Note 4). Some of these taxa have been also
documented on the basis of the megafloristic record from the Río
Turbio Formation (e.g. refs. 16–18). The subsequent cooling and
aridification events of the Oligocene and, particularly the Mio-
cene, pushed northwards these tropical-affinity taxa. Overall, our
evidence demonstrates that the mid-Eocene greenhouse world
favoured the penetration of neotropical migrant species to the
highest latitudes; the combination of these neotropical migrants
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along with the persistence of southern Gondwanan natives may
have triggered the gradual increasing diversity that we observed
across the MECO. Interestingly, our mid-Eocene peak in diversity
mirrors the pattern seen in the South American mammal fauna,

which records the highest richness estimates for the Cenozoic
from Patagonia during the Barrancan Mammal Age19.

Terrestrial evidence on how rainfall patterns shifted over the
MECO is sparse. Paleosol evidence from western North America
and southern South America indicated that during this warming
event, subhumid or semi-arid conditions prevailed,
respectively20,21. Lithofacial and pollen records from Asia (north-
western China) indicate a rapid aridification step across the
MECO22. Our analysis detects a strong reduction of humid-
demanding taxa along with an increase of arid-tolerant angios-
perms (e.g. Proteaceae and Myrtaceae) (Fig. 6), suggesting sub-
humid conditions across the terrestrial zenith of the MECO (our
core MECO). However, the onset and the end of the MECO are
typically characterized by peaks in abundance of ferns (up to
60%), along with other wet-demanding taxa, indicating humid to
hyper-humid conditions. Whether or not these shifts in humidity
are linked to regional or global conditions remain to be tested.

Fig. 8 Selected spore-pollen species from the Eocene of southern South America. (1–6) Gondwanic elements (blue square); (7–12) Tropical elements
(orange square). (1) Cyatheacidites annulatus, sample 32 V18(1); (2) Araucariacites australis, sample 14 J44(2); (3) Podocarpidtes elegans, sample 28N41(4);
(4) Nothofagidites rocaensis, sample 17 E40(1); (5) Myrtaceidites verrucosus, sample 14 H38(3); (6) Propylipollis pseudomoides, sample 19C22(1); (7)
Ilexpollenites anguloclavatus, sample 13N57(4); (8) Perisyncolporites pokornyi, sample 3 I12(3); (9) Bombacacidites isoreticulatus, sample 16 Y39(2); (10)
Cupaneidites insulares, sample 19 D13(4); (11) Arecipites regio, sample 3 R40(1); (12) Psilamonocolpites medius, sample 6 S31(1). Scale bar is 10 μm. Taxonomic
names are followed by the slide number and England Finder coordinates.

Table 2 Diversity estimates derived from spore-pollen
records from Neotropics11.

Age (Mya) Interval Evenness
neotropics

EWSD (coverage
= 0.8)

EWSD
(Chao1)

37–38 Post-MECO 0.536 42.483 74.782
38–41 MECO 0.658 47.457 118.149
42 Pre-MECO 0.519 37.573 102.674

Estimates from pre-MECO, MECO, and post-MECO.
EWSD Estimated Within-Sample Diversity.
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Fossils revealing the floristic response to the MECO warming
allowed us to estimate the magnitude of this increased in diversity
in America’s southernmost latitudes. In particular, we infer that
greenhouse conditions promoted the diversification of austral
floras, although plant richness in this region was remarkably
lower than low-latitude counterparts at equivalent times. The
subsequent Antarctic glaciation (early Oligocene) and widespread
aridification (late Miocene) may have even accentuated such
difference by gradually impoverishing Patagonian biotas. Overall,
our study supports the notion that there has been a massive
turnover from rich mid-Eocene rainforest biomes across the
South American highest latitudes through the current steppe-
dominated landscapes.

Methods
Fossiliferous localities. Samples were collected from the shallow-marine Río
Turbio Formation in southern Patagonia (Fig. 1). The Río Turbio Formation
preserves a thick shallow-marine and estuarine succession characterized by sand-
stones, limestones, and conglomerates interbedded with clay horizons accumulated
in coastal marine, wave- and tide-dominated shallow water environments23,24. Our
high-resolution record encompasses the MECO as well as pre- and post-MECO
floras. For the first time, we quantified plant species richness in the southernmost
regions of South America during the globally warm mid-Eocene Epoch using
palynological data (pollen and spores). Other fossils preserved in these deposits
include terrestrial (leaves (e.g. ref. 25), trunks (e.g. ref. 26)) and marine (shells (e.g.
ref. 27), foraminifera (e.g. ref. 28), and dinocysts (e.g. ref. 29)) remains. The spore-
pollen bearing sediments are constrained as the mid-late Eocene (~46–34Myr)
based on foraminifera30 and dinoflagellate cyst (e.g. ref. 29); this study (see Sup-
plementary Note 2) data. Here, we studied pollen samples collected from a ca 400
m section spanning ~10 million years of the Eocene in order to better understand
the effects of climatic change on continental biotas.

Palynology. A total of 53 samples from the Río Turbio Formation were processed.
Palynomorph and dinocyst preparations were undertaken at the Museo Argentino
de Ciencias Naturales and followed a basic procedure of maceration, chemical
digestion of silicates (hydrofluoric acid), fluorosilicates (clorhidric acid), and a light
oxidation to remove excess of amorphous matter (2 min in 70% nitric acid).
Finally, residues were concentrated and mounted onto slides. Residues were sieved
with 25 µm and 10 µm meshes. Fifty-one samples yielded abundant pollen, spores
and dinoflagellate cysts. Slides were scanned under a transmitted light microscope
Leica DM 500. Spores, pollen grains, and dinocysts were photographed by a Leica
camera ICC50 HD. A mean of 354 spores and pollen grains and 285 dinocysts were
counted per sample. Slides are housed at the Museo “Padre Jesús Molina” under
the catalogue numbers 21647–21699, prefixed MPM-PB. We removed some of the
samples (e.g. coal seam samples) for the subsequent biodiversity and abundance
analyses, particularly those that we interpreted as having been deposited in a more
continental paleoenvironment. Mudstones and fine sandstones preserving rela-
tively high frequencies of dinocysts (representing temporary marine incursions)
contain higher proportions of pollen from both wind-pollinated (e.g. podocarps
and southern beeches) and insect-pollinated (e.g. malpighs, mallows, and palms)
families, which may have originated a considerable distance inland from the coast.
These samples therefore represent a much larger source area (regional to sub-
continental), compared to the local signal contained in the coal measure samples,
as previously tested31.

Quantitative analysis. We conducted all analyses using the open-source software
R32; see Supplementary Note 5 for R scripts. We arranged spore-pollen data from
the Río Turbio formation in a 32 × 117 matrix with samples and taxa in which each
cell contained count data for all taxa of the selected samples (Supplementary
Data 2). We also included in our analysis a 21 × 4375 matrix (sedimentary section
R111) from the Neotropics encompassing the MECO (42.3–37.7 Mya) in order to
compare floristic diversity estimates. We conducted two cluster analysis to explore
sample associations (Q-mode) based on either marine (dinocysts) or continental
(pollen and spores) palynomorphs. We used the ‘chclust’ function of R/rioja33 that
performs a constrained cluster analysis of a distance matrix, with clusters con-
strained by sample order. The distance matrix used was the Bray–Curtis metric34

and the agglomeration method was the CONISS33. We ordinated the samples and
species using NMDS (non-metric multidimensional scaling) using vegan R pack-
age35; NMDS is considered one of the most robust unconstrained ordination
methods in community ecology36. We estimated Evar evenness, recommended
among other evenness indices37. For estimating biodiversity, we standardized
samples to equal levels of size and completeness, or ‘coverage’ of species38, also
known as shareholder quorum subsampling, or coverage-based rarefaction. Stan-
dardizing sampling by coverage rather than sample size has proven to be a more
powerful and less biased approach to estimate richness38. We estimated expected
richness within samples based on our abundance matrix using iNEXT R package39

and among samples from the pre-MECO, MECO, and post-MECO intervals using
vegan R package35. For within-sample richness, we calculated the expected richness
at a coverage level of 0.8, enough to include most of the samples of our dataset. We
also estimated Chao1 richness estimator, which uses singletons (species represented
in the sample by only one individual) and doubletons (species represented in the
sample by exactly two individuals) to estimate the number of unobserved species.
This non-parametric estimator has a more rigorous framework of sampling theory
than parametric estimators or curve extrapolations40. The bootstrapped 95% lower
and upper confidence limits are also presented for all richness estimators.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Slides are housed at the Museo “Padre Jesús Molina” under the catalogue numbers
21647–21699, prefixed MPM-PB. The authors declare that the data that support the
findings of this study are available within this paper and its Supplementary Information
files, and are available from the corresponding author on reasonable request.
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